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Background and Objective: Chest radiography, otherwise known as chest X-ray (CXR) is the most 
in demand and widely performed investigation in radiology department; owing to the multiple combining 
effect of rise in prevalence of respiratory diseases globally and the growing need of heath assessment for pre-
employment, pre-operative and migration purposes. However, this task is already proving overwhelming, 
placing an immeasurable burden of workload on radiographers, radiologist, and the entire health system; 
this has resulted in long waiting time, fatigue-based technical error, interpretation error, reporting delays 
and backlogs. To ameliorate this predicament, medical imaging has witnessed the introduction of artificial 
intelligence (AI). Thus, with the raid evolutionary trend in technology, this article seeks to review current 
state of evidence on AI use in CXR and level of progress made to minimize these errors and delays. In 
addition, point out challenges, as well as unfold areas for future research to better detection rates and 
improve overall clinical outcomes.
Methods: A search for relevant literature that focuses on AI in CXR was conducted with the help of certain 
keywords [machine learning (ML), chest radiography, deep learning (DL), natural language processing (NLP), 
expert system (ES) and fuzzy logic (FL)]. Thereafter, a narrative logical approach to technically analysing 
and synthesizing findings across domains of AI (ML, DL, NLP, ES, FL) and robot technologies as it relates 
to CXR done.
Key Content and Findings: A thorough evaluation of the substance of evidence these studies bring to 
enhance overall workflow and health outcomes show that ML is very useful in performing administrative and 
imaging tasks such as exam scheduling, worklist management and image acquisition. On the other hand, DL 
is better suited for classification tasks on a broad spectrum of chest anomalies in CXR. However, a hybrid 
approach involving ML-DL, FL-DL and NLP-DL/ML technologies seems to further improve reporting 
accuracy and offer more insights into CXR interpretation. Further studies on training and refining models 
for clinical use in this perspective is demanded. 
Conclusions: AI still in its early stages; this review to serve as road map to implementation and policy 
making, guide routine practice and improve clinical governance.
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Introduction

Chest radiography is a painless non-invasive diagnostic test 
that uses conventional X-rays for evaluation of the airways, 
pulmonary parenchyma and vessels, mediastinum, heart, 
pleura and indeed the entire chest wall (1). Radiographic 
techniques such as posteroanterior (PA), anteroposterior 
(AP), obliques and lateral projections gotten in erect, supine 
and decubitus positions can achieve this (2,3). Chest X-ray 
(CXR) is the most performed investigation in radiography 
unit and one of the widely conducted diagnostic imaging 
test (both adults and children) in many countries, 
accounting for nearly half of the entire radiographic images 
obtained in routine practice (44%) (2,4-6). CXR, thanks to 
its high availability, low cost, execution at the patients’ bed, 
represents the first-line examination both in the emergency 
and in the standard settings (7).

CXR supports diagnosis, treatment, and management 
of thoracic- related diseases and is required by clinicians 
in patients presenting with chest pains, shortness of 
breath, cough, metastatic diseases and malignancy, and 
any intending medical surgical procedure (8). It plays a 
huge diversifying role in the diagnosis and management 
of rising respiratory disorders witnessed worldwide, for 
recruitment and pre-operative checks, migration purposes 
and periodic health checkups. These situations have placed 
an exaggerate burden on radiographers, radiologists, and 
the entire health system, leading to long waiting time, 
fatigue-based technical and interpretation errors, reporting 
delays, backlogs, and longer turnaround time (9,10). In 
fact, according to Pouraliakbar (11), CXR remains the 
most common radiographic yet one of the most difficult to 
interpret; a high misinterpretation rate of 30% reported in 
the recent findings of Kaviani et al. (6). Also evident is the 
lack of diagnostic expertise in rural areas of the world where 
radiologists are unavailable (9,10). 

In a bid to meet this growing demand, medical imaging 
has witnessed the advert of artificial intelligence (AI). With a 
steep increase in medical images acquired and a vast amount 
of image reviews observed in the last decade, AI (comprising 
different technologies that is based on advanced algorithms 
and learning system) is projected to be one of the major 
disrupting forces in radiology in future health care practice 
(12,13). Also is a huge expectation in delivering timely and 
accurate interpretation of chest radiographs obtained such 
as high-level confidence in differentiating normal from 
abnormal, and further characterizing the abnormal findings. 
This is anticipated to guide clinicians on proper clinical 

evaluation, treatment and management, and appropriate 
follow up (8). However, with AI still very much in the 
early stages, we shall in this narrative review discuss each 
domain of AI and its applicability to achieving this in CXR. 
It is envisaged that research gaps for future studies will 
be unravelled to support routine clinical implementation, 
policy making, address possible limitations and enhance 
clinical governance. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://jmai.amegroups.com/article/view/10.21037/jmai-
24-67/rc). 

Methods

A search for all relevant literature that focuses on major AI 
techniques in chest radiography was done on 31st December 
2023 by a team of experienced radiographers and radiologist 
in several databases (PubMed, Web of Science, Google 
Scholar, MEDLINE, ScienceDirect, Cochrane library, 
PLOS, and Scopus). Certain keywords aided this process 
(artificial intelligence, chest radiography, machine learning, 
deep learning, natural language processing, expert system, 
fuzzy logic), filtering studies only in English, conducted 
any year, and of any design; synthesizing evidence per AI 
domain in a narrative way that highlights progress made, 
current benefits, challenges and future opportunities to 
improve detection rates and patient outcomes (Table 1). 

Discussion

This section covers discussion on key findings from existing 
literature across AI domains as well as robotic technologies.  
Table 2 summarises the strength, limitations and gaps from 
all discussed literature in this review.

Machine learning (ML)

ML focuses on building a machine with the ability to learn 
from data and experience through algorithms, which are 
the engines that power ML, informing the computer how 
to learn to operate on its own (14). With the advent of 
digital radiography (DR), there has been great excitement 
in the last decade developing AI applications, with 
potential benefits of ML in chest radiography spanning 
across optimizing all steps in the imaging chain-exam 
scheduling, worklist management, image acquisition and 
image interpretation. A combination of algorithms for 
administrative, non-interpretive and quality improvement 

https://jmai.amegroups.com/article/view/10.21037/jmai-24-67/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-24-67/rc
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Table 1 The search strategy summary

Items Specification

Date of search 31st December 2023

Databases and other 
sources searched

PubMed, Web of Science, Google Scholar, MEDLINE, ScienceDirect, Cochrane library, PLOS, Scopus

Search terms used Artificial intelligence, chest radiography, machine learning, deep learning, natural language processing, expert 
system, fuzzy logic, robotics

Timeframe Studies conducted any year (no timeframe)

Inclusion criteria Any study type, but studies only in English

Selection process Selection process was conducted by a team of radiographers and radiologist, who did this together, pulling 
knowledge in their areas of expertise as it relates to chest radiography jointly

purposes is majorly a function of ML, a subset of AI. The 
desire to do this is clear, owing to the growth in imaging 
volumes, number of images per study and vast amount of 
medical information available through electronic medical 
records (15).

Exam scheduling
ML algorithms has the potential to support a variety of 
non-diagnostic tasks for quality improvement purposes such 
as order entry support, patient scheduling and resource 
allocation through incorporation of ML algorithms into 
electronic health record systems (16). 

Pierre et al. (17) demonstrated integration of ML and 
NLP tools into the scheduling software which automatically 
is known as “concept of the electronic round trip”. This 
usually begins with the referring provider (or the patient) 
placing an order for a radiologic examination electronically, 
which flows over to the electronic health record (EHR) 
and radiology information system (RIS) where applicable, 
followed by the imaging device, and then the viewer or 
picture archiving and communication system (PACS). 
Hence no need to re-enter data at any step of the cycle. 

In this study (18), a scheduler was created to schedule 
CXRs for patients; the data entry areas of the user interface 
permitting request for CXR, preferred time and location. 
This database successfully searched utilizing a “nearest 
neighbor algorithm” to either match the criteria or return 
the best alternative to the scheduler; to accept, decline or 
request another time. In spite of the progress, this field 
appears to still very much be in the embryonic stages, 
most ML uses theoretical in development or limited to 
a particular institution (15). Thus, as new AI software 
for scheduling imaging appointments is developed, it is 

essential that robust validation is undertaken in compliance 
with evidence-based medical imaging (19).

Worklist management
ML algorithms can also successfully predict wait times, 
appointment delays and no shows for patients scheduled to 
undergo imaging examination, based on environmental and 
patient-related factors (20,21). Nelson et al. (22) illustrated 
ML combination with large-scale data allows for creation 
of rich complex high dimensional complex models, able 
to predict not only attendance (that allows for targeted 
intervention) but matching detailed appointment and 
patient characteristics useful to infer systemic modifiable 
hospital causes of non-attendance by patients.

Chong et al. (23) trained a model to predict patients with 
the highest risk of missing their appointment, and these 
patients receiving a phone call reminder. It was found to 
decrease the no-show rate from 19.3% to 15.9% during its 
6-month period of deployment, as missed appointments is 
usually associated with increased health care cost and high 
risk of poor health outcomes (24). 

Furthermore, in the recent studies of Baltruschat  
et  al .  (25),  an ML model that performed worklist 
prioritization for critical findings in chest radiographs was 
invented. A realistic simulation framework developed based 
on convolutional neural networks (CNNs) in which worklist 
were rearranged by AI, reporting based on urgency level of 
CXR findings instead of the usual serial arrangement [first 
in first out (FIFO)]; and this was found to be associated with 
a reduction in average report turnaround time (RTATs) for 
all critical CXR findings. 

As seen in Annarumma et al.’s study (26), similar findings 
were observed in the studies carried out by a research 
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team led by Giovanni Montana, extracting about 470,388 
adult CXRs acquired from 2007–2017 at Guy’s and St 
Thomas’ NHS Hospitals. Having understood the findings 
of reporting radiologist, formulated an algorithm that can 
infer priority level for each radiograph (as critical, urgent, 
non-urgent and normal). This team applied the algorithm 
comprising of computer vision ML models and NLP 
system, which was discovered to cut down the average 
review time from 11 to 2.7 days for critical CXRs and from 
7.6 to 4.1 days for urgent CXRs. Elsewhere in the study of 
Nabulsi et al. (27), AI was found to prioritize abnormal cases 
in a simulated workflow, turnaround time for abnormal 
cases reduced by 7–28%. These results are indicative of 
how such models can greatly reduce delays in acting on 
abnormal CXRs. 

In spite of the low risk and few rules/regulations 
associated with this multiple software, its limited availability 
as well as lack of a well-documented research/evidence is 
stalling implementation in clinical practice; majority of 
conducted studies being retrospective and using historically 
labelled data to train and test algorithms. This gap is of 
great concern as AI performance is projected to be likely 
worse when encountering real-world data (28,29). 

Image acquisition
Several ML programs developed have greatly assisted 
radiographers in positioning, repeat rate reduction of 
radiographic studies due to technique, image noise 
improvement and radiation dose reduction.

Gang et al. (30) established that ML algorithms are 
able to detect inadequate positioning as well as assist in 
automated positioning during radiographic examinations; 
with an accompanying 16% reduction in radiation exposure 
using automated positioning. 

Siemens Healthineers introduced a new X-ray system 
known as Ysio X.Pree, the world’s first intelligent X-ray 
system with integrated AI for optimizing daily routine of 
chest image acquisition in radiography; preparing for X-ray 
image acquisition using a live 3D camera. The AI-based 
algorithm automatically detects the thoracic region and sets 
the optimal acquisition area (collimation), focusing radiation 
only to the area of interest, with the goal of acquiring an 
image containing all necessary details at the least possible 
exposure. This system comprises AI functionality and other 
intelligent tools for image acquisition in what is known as 
myExam Companion (31).

Similar innovations can be seen in Carestream’s AI-based 
software for CXR, comprising of smart positioning, smart 

technique and smart collimation. Smart positioning consists 
mainly of two RGBD (RGB & depth) cameras, pose-
detection algorithm, a classifier, a hub, two controllers, a 
console PC (personal computer), markers and preparation 
areas. This system offers automatic bucky height adjustment 
and correct positioning check on shoulder-height, contact 
with bucky, pose, center alignment, tilt, orientation and 
hand position as seen in the console display. In addition, a 
video assist display providing patient with exam information 
along with a picture on how to position themselves next 
to the equipment. Smart technique uses an RGBD camera 
that captures patient information and applies AI algorithms 
to detect patient thickness and produce proper exposure 
technique in mobile or fixed tabletop DR machines devoid 
of Automatic exposure control (AEC). Smart collimation 
utilizes camera data on shoulder width and height during 
chest PA, and automatically adjusts collimator blades to the 
desired field for different patients (32). 

According to GE HealthCare (33), ML algorithms 
embedded into the imaging system and operating in parallel 
to image acquisition have great potential to improve 
radiology image acquisition process by improving image 
quality and efficiency during radiologic examinations. 
Hence, Radiologic technologists can now select an 
anatomic part of the body, body size and projection from 
a list of presets and the anatomic specific algorithms 
allow for increase receptor sensitivity, dose reduction and 
optimization of image acquisition (34). 

Furthermore, it is interesting to discover in the studies of 
Lee et al. (35) that noise reduction algorithms can effectively 
reduce radiation dose while same time maintaining image 
quality; Jin et al. (36) demonstrating two types: traditional 
denoising algorithm and deep learning methods based on 
neural network. 

Elsewhere, Wuni et al. (37) in research asserted that 
AI has the capacity of impacting radiographers daily work 
(diagnostic radiography, 79.6% and therapeutic radiography, 
88.9%) by standardizing some aspects of patient care and 
technical factors of radiography practice such as patient 
identification, image processing and dose optimization. 
However, there is a need for sufficient scientific evidence 
and proof, which at the moment is lacking.

Image interpretation
Since after the first attempt to establish computer aided 
detection (CAD) systems [comprising image preprocessing, 
extracting region of interest (ROI) regions, extracting ROI 
features and classifying disease according to the features] in 
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the 1960s, it has gained popularity in radiology due to its 
ability to assist radiologist detect suspicious lesions often 
missed and improving the accuracy of their detection (38). 

The earliest existed CAD system made use of the ML 
based methods, otherwise referred to as pixel-based method 
for the detection of lung cancer, with the feature extraction 
intuitive. In chest images for example, each pixel is assigned 
a corresponding anatomical structure such as lung, heart, 
mediastinum, diaphragm (segmentation); and “a classifier” 
[e.g., k-nearest neighbor (KNN), linear discriminant 
analysis (LDA), etc.] classifies each pixel based on various 
features inputted into it such as grayscale value of each 
pixel, spatial location information and texture statistical 
information (39). 

During coronavirus disease 2019 (COVID-19), in 
his analysis built a ML model, utilizing support vector 
machine (SVM) classifier algorithm (one of the most widely 
used supervised ML approaches owing to its accuracy 
and less computational power demand); anticipated that 
such rapid computer-aided diagnostic approach boosting 
high performance metrics would be helpful in control 
of the pandemic. This SVM, trained using histogram of 
oriented gradients (HOG) descriptor aided the detection 
of COVID-19 in CXR, with a sensitivity and specificity of 
97.92% and 98.91% respectively (40).

Findings from a recently conducted systematic review 
in 2023 on tuberculosis, one of the commonest infectious 
diseases revealed high potential of ML in detecting 
tuberculosis, with an average accuracy and sensitivity of 
93.71% and 92.55% respectively. The Radiologist’s report 
was utilized as reference standard in most included studies 
under review; SVM, KNN and random forest (RF) among 
the popular ML approaches employed (41).

Similar results were obtained in this recent study, a 
quadratic SVM model of ML automating the early detection 
process of pneumonia in CXRs with an accuracy of 97.58% 
and a smaller model classification time (42). Therefore, 
it can therefore be deduced that classical ML shows great 
performance on a small amount of data, iterating quickly 
and trying different techniques in a very short time (43). 
However, as radiological imaging data continued growing 
at a disproportionate rate compared with available trained 
readers, the main challenge was to determine in a robust 
way features for other chest pathologies aside lung cancer, 
tuberculosis and COVID-19; this then opened up new 
opportunities for advancing CAD system in medical 
imaging (44) leading us to deep learning.

Deep learning (DL)

DL is the most prevalent for detection, characterization and 
monitoring of diseases. DL does not require the process of 
feature extraction and disease classification as seen in the 
traditional CADs, but instead utilizes any neural networks’ 
architecture with deep layers such as convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), 
Transformer, autoencoder (45-47). CNNs, designed to 
mimic the way human brain process information to make 
a final decision, comprises series of layers that successfully 
map image inputs to desired end points. The first layer 
(convolutional layer) detects and extracts features, the 
second layer (pooling layer) performs feature aggregation by 
selecting and reducing the number of features, and the third 
layer (fully connected layer) integrates all features extracted 
by the previous layer (47,48). A summarized workflow of 
DL-based chest Xray detection system as seen in a recent 
review conducted by Rehman et al. (49) are:

(I)	 Image acquisition: generating digital chest images, 
a primary requirement for model training.

(II)	 Pre-processing: techniques to improve quality 
of chest images e.g., image enhancement, ROI 
detection, bone suppression and edge detection.

(III)	 Feature extraction: distinctive, substantial, and 
concise information that aids in distinguishing one 
phenomenon from another.

(IV)	 Feature selection: selection of the most optimum 
and relevant features from the original features 
and removing irrelevant/noisy features to optimize 
model performance.

(V)	 Classification: categorizing a given set of data into 
classes.

With an increasing number of AI algorithms for triaging, 
detecting and classification purposes on benign and 
malignant CXR anomalies (50,51), DL has been integral to 
CXR analysis in several studies:
	For pulmonary opacities, pleural effusion, hilar 

prominence and enlarged cardiac s i lhouette 
classification (Qure AI) (52): no statistical difference 
between DL model used and test radiologist, 
AUC ranging from 0.837–0.929 and 0.693–0.923 
respectively. The accuracy of DL in the evaluation 
of pulmonary and hilar abnormalities found to 
be limited in images with presence of chest wall 
implanted devices.

	For atelectasis, cardiomegaly, emphysema, hiatal 
hernia, pneumonia, pleural effusion, pulmonary 
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masses and nodules classification (CheXNeXt) (10): 
radiologist achieved statistically significant higher 
AUC than CheXNeXt on cardiomegaly, emphysema 
and hiatal hernia (0.888 vs. 0.831, 0.911 vs. 0.704, 
0.985 vs. 0.851 respectively); CheXNeXt performed 
better than radiologist in detecting atelectasis 
(AUC of 0.862 vs. 0.808); no statistically significant 
difference in AUCs for other abnormalities.

	For CXR classi f ication as either pulmonary 
tuberculosis or normal (AlexNet and GoogLeNet) 
(53): although AUCs for both pretrained models 
were greater than the untrained (P<0.001), best 
performance recorded when both models were 
taken as a whole (AUC of 0.99). Furthermore, a 
radiologist-augmented approach further improved 
accuracy (sensitivity and specificity of 97.3% and 
100% respectively) in cases of disagreement among 
classifiers.

	For detection of malignant lung nodules on CXR (54): 
deep CNN (DCNN) software (built upon a modified 
version of ResNet-50) improved average sensitivity 
of radiologist in detecting malignant pulmonary 
nodules on CXR from 65.1% to 70.3% before and 
after DCNN use respectively, as well as reduction in 
number of false- positive marks per chest radiograph 
from an initial 0.20 to 0.18, P<0.001.

	For c lass i f icat ion of  relevant  speci f ic  chest 
abnormal i t ies  that  spans  across  pulmonary 
parenchyma diseases, pleural diseases and mediastinal 
diseases (55): DL algorithm had AUC of 0.95 for 
identification of chest radiographs with clinically 
relevant abnormalities; a sensitivity and specificity 
of 88.7% vs. 69.6% and 81.6% vs. 90.3% at high-
sensitivity cut off and high-specificity cut off 
respectively. Also to point is the improved sensitivity 
of radiology residents after using DL algorithm (from 
65.6–73.4%, P=0.003), although a slight reduction in 
specificity was recorded (from 98.1–94.3%, P<0.001).

	For examining the effect of DL algorithms on 
interpretation of CXR as normal or abnormal (56): 
a significant difference in performance between 
radiologist working with and without DL-based 
assisted technology observed (AUC 0.801, P<0.001). 
In addition, higher diagnostic sensitivity (68.21% vs. 
61.13%, P<0.001), specificity (92.76% vs. 91.98%, 
P=0.577) and accuracy (76.37% vs. 71.39%, P<0.001) 
among experienced radiologist working with and 
without this technology.

	Trained DL models (ResNet34, ResNet50, VGG-
19 and DenseNet169) for classification of CXR 
as either normal or pneumonia during the era of  
COVID-19 (57): these models exceeded 84% 
average accuracy on pneumonia which is promising. 
Best performing model was DenseNet169 (average 
classification accuracy of 95.72%), with reported 
classification accuracies of 97.97%, 96.62% and 
92.57% for bacterial, viral and normal respectively.

	A systematic review to ascertain the application of 
DL algorithms on CXR analysis of pneumonia and 
COVID-19 (58): VGG (26.5%), ResNet (20.6%), 
MobileNet (14.7%) and DenseNet (14.7%) were 
among the most common CNN architectural models 
of DL used, with a mean accuracy of 93.62%, 
92.13%, 95.16% and 84.25% respectively.

	DL techniques in CXR utilizing a multi-label 
classifier (DenseNet) to classify abnormalities based 
on 14 predefined labels that includes atelectasis, 
cardiomegaly, pleural effusion, consolidation, 
pneumonia, lung lesion, edema, lung opacities, 
pneumothorax (59): an approximated accuracy and 
AUC of 91% and 0.8 recorded for the 3 variations of 
DenseNet; This multi-label classifier in comparison 
with a benchmark improved classification of the 14 
labels. 

	DCNN for early detection or absence of Tuberculosis 
in CXR (60): the accuracy, sensitivity, specificity 
and AUC for the three adopted DCNN algorithms 
(ResNet, VGG and AlexNet) was given as follows: 
96.73%, 95.50%, 98.05%, 0.9944 for ResNet; 
94.96%, 94.20%, 95.78%, 0.9902 for VGG; 95.06%, 
93.20% 97.08%, 0.9917 for AlexNet. While the 
general performance of all models was impressive (all 
above 94% in key metrics measurement), ResNet was 
found to outperform other models, showing excellent 
diagnostic ability amidst stratification analysis by sex, 
age and symptom.

	A hybrid DL approach to detecting pneumonia in 
CXR (61): this hybrid system (CNN architecture 
together with a ML classifier- SVM, KNN or RF) as 
oppose the traditional CNN architecture achieved 
a higher performance in accuracy, with short 
classification consumption time.

	A proposed C19D-Net model (DL techniques 
applying the inceptionV4 architecture and ML 
multiclass SVM classifier) in classifying COVID-19 
and other kinds of pneumonia in CXR (62):  
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Table 2 Summary of the strengths, limitations, and gaps from all discussed literature across different AI domains in this review

S/N Literature AI domain Strength(s) Limitation(s) Gap(s)

1. Pierre et al. [2023] ML & NLP Extensive review on AI application to support and streamline daily 
radiology practice, engaging several studies

Issues of quality, safety and undeveloped sophisticated active algorithm monitoring 
mechanisms not covered

Impactful AI application in less investigated areas e.g., prognostic inference, 
assisted tumour grade classification, finding contraindications for imaging

2. Langer [2002] ML A well-constructed model performing exam rescheduling, archiving 
studies and providing DICOM worklist

– Additional work on the DICOM/HL7 interface broker for effective communication, 
and completion of the base DICOM service classes needed

3. Nelson et al. [2019] ML A model built with open-source tools, estimated, and validated on 
conventional hardware

Model trained only on routinely collected administrative data Developing complex models that reflects the multiplex interplay of patient, 
environmental and operational causal factors

4. Chong et al. [2020] ML Empirical approach to developing state-of-the-art model, with moderate 
amount of data acquired from frontline information technology systems

– A highly complex model that will report on quality improvement metrics sought

5. Baltruschat et al. [2021] ML Development of a realistic clinical workflow simulator based on empirical 
data and use of state-of-the-art convolution neural network allowed for 
precise assessment

Open-i dataset upon which the CNN was trained included mainly out-patients in contrast to  
the predominantly stationary patient collective of the hospital

Smart worklist prioritization with more pathologies and different degree of 
manifestation

6. Annarumma et al. [2019] DL & NLP The system offered real time prioritization Clinical risk from delayed reporting of cases falsely classified as normal, high chance of AI 
performance exaggerated since findings grouped into categories, prioritization system takes 
account only image findings without its clinical context, absence of inpatient radiographs in 
simulation

More studies to reduce false negative rate to minimum as well as misclassification 
rate. Also, further work in developing a multiresolution architecture that allows 
optimal image sizes to be selected automatically

7. Nabulsi et al. [2021] DL Extensive evaluation on models’ generalizability to multiple datasets, 
different countries and population groups, and unseen diseases

Wide range of CXR abnormalities not represented, only CXR viewed without referencing 
additional clinical or patent data, absence of historical reporting timing information

Prospective studies to consider various degrees of urgency for different diseases 
and provide patient’s clinical information so the true effect will be determined

8. Gang et al. [2021] ML Adopted AI based automatic patient positioning technique reduced 
cross-infection risks between patients and medical workers

Confounding bias due to relatively small sample size. Also, scan protocols not fully optimized 
and iterative reconstruction algorithms not used due to confusion during the
pandemic

–

9. Siemens Healthineers [2020] ML Easy user interface boosting AI functionality and intelligent tools Lack of documented empirical evidence –

10. Sun [2021] ML System comprising several smart and Intelligent tools Lack of documented empirical evidence –

11. GE HealthCare [2023] ML Seamless integration of AI solutions in the device Lack of documented empirical evidence –

12. Lee et al. [2020] ML Applied advanced algorithm that sustained noise suppression 
performance without degrading visual content

Relatively small amounts of subjects, study population did not have diverse abnormal findings System compatibility, detector type and prerequisites for raw data be investigated

13. Wuni, Botwe and Akudjedu 
[2021]

ML Opportunities, challenges, and way forward of AI explored Limited to Ghana More research on AI strategies by national societies and regulatory bodies to 
harmonise the implementation efforts

14. Erdaw and Tachbele [2021] ML Easy integration of algorithm into the clinical system Retrospective images used Study DL on prospective images, clinical and sociodemographic data from COVID 
patients. Also, AI application in predicting prognosis and treatment outcomes of 
patients

15. Hansun et al. [2023] ML A thorough systematic approach Only three databases were used, data volume and quality concerns Proper data curation, transfer learning and multimodal approaches required

16. Barakat, Awad and  
Abu-Nabah [2023]

ML Practical and less computationally expensive novel approach Limited to the binary classification of pneumonia using pediatric X-rays Studies refining optimal feature-extraction scheme

17. Singh et al. [2018] DL Unbiased selection of CXR in the study as none of the test radiologist 
were involved in the selection process

Pre-hoc power analysis (to determine the number of CXR and test radiologists required to 
assess the DL algorithm) performance) not performed. Also is the combined evaluation of 
different types of pulmonary opacities rather than as separate categories

Published guidelines on the most appropriate cut-off values for DL algorithm and 
how such deviations would affect the performance of DL

18. Rajpurkar et al. [2018] DL DL algorithm internally validated after rigorous training. Concurrent 
detection of up to 14 CXR pathologies

Neither the DL algorithm nor the radiologists were permitted to use patient history or review 
prior examinations. Evaluation limited to a dataset from a single institution

Determine the feasibility of outcomes in a prospective clinical setting. Also, 
the need to address generalizability of these algorithms to datasets from other 
institutions

19. Lakhani and Sundaram 
[2017]

DL Augmentation with multiple preprocessing techniques further improved 
accuracy

Limited to only tuberculosis. Only PA CXR images used –

Table 2 (continued)
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Table 2 (continued)

S/N Literature AI domain Strength(s) Limitation(s) Gap(s)

20. Sim et al. [2020] DL High generalizability as image selection and review not limited to an 
institution or geographic region

Spectrum bias due to omission of images with benign nodules or ambiguous aspects. No set 
time interval between stand alone and software aided sessions leading to possible recall bias

Further studies with a crossover design to reduce the effects of demographic and 
radiologist factors

21. Hwang et al. [2019] DL DL algorithm application in a clinical setting Performed at a single institution, retrospective nature of study design, algorithm performance 
comparison with on-call radiology residents instead of experienced radiologist, only PA CXR 
used

Prospective studies to confirm if algorithm use can improve clinical workflow and 
patient outcomes

22. Kim et al. [2021] DL Prospective study, cost benefit of algorithm Simulation-based trial, selection bias, a small target range More research using an algorithm with a broader target range, evaluating the 
effectiveness of DLCR on patient outcomes in the real-world setting

23. Hammoudi et al. [2021] DL Experimental nature of study – Future works on models to discern between COVID-19 viral and non-COVID-19 
viral pneumonia

24. Meedeniya et al. [2022] DL A well conducted systematic review highlighting available database, 
trends, challenges and future research directions

Limited to pneumonia and COVID-19 conditions Reviews on current state-of-the-art solutions

25. Monshi, Poon and Chung 
[2022]

DL Multilabel classifier with antialiasing blur pooling and parallel training – Investigating the use of DICOM images in detecting diseases with small and 
complex structure

26. Nijiati et al. [2022] DL System was effective even without external clinical information 
assistance

Possibility of wrong labels for chest radiographs, limited generalizability to pediatric cases, 
limited study population to 15 years and above

–

27. Masad et al. [2021] DL & ML Novel system achieved efficient performance with short classification 
consumption time

– –

28. Kaur et al. [2021] DL & ML Study supported by strong empirical evidence Hardware restrictions Training proposed model on larger image sets and comparing its performance to 
wider existing methods

29. Fati, Senan and ElHakim 
[2022]

DL & ML Compared a two-part hybrid technology with an ANN Lack of images in the tuberculosis dataset Extracting deep features using CNN models and integrating them into feature 
vectors

30. Ahn et al. [2022] DL Used data from more than one source, study met requirements for the 
health insurance portability and accountability act guidelines

Only PA CXR images, power analysis not conducted to determine adequacy of sample size  
and number of test readers

Effect of AI-aided or unaided interpretation on detection of the non-target 
findings, assessing the real-world clinical chest radiograph interpretation 
workflow

31. Liu et al. [2013] NLP A large sample of chest radiograph reports evaluated CXR reports drawn from a single healthcare delivery system, tools developed to  
analyse reports in a retrospective, rather than a real-time setting

Real-time report indexing and querying to support the use of the tool under study 
at point of bedside care

32. Xue et al. [2018] NLP & DL Experimental in nature, incorporating CNN with LSTM recurrently Training model on a small training set A new training strategy/evaluation metric on a larger and better dataset taking 
both word accuracy and grammar correctness into account

33. Towfighi et al. [2019] NLP & ML Study utilized open-source code, free for personal or community use Limited size of sample and frequency of positive findings –

34. Olthof, van Ooijen and 
Cornelissen [2021]

NLP & DL Study varied prevalence within the dataset suggesting a relationship 
between performance and prevalence

Absence of inter-rater agreement assessment, study limited to an institution Studies that consider variation in report size within the datasets, external 
validation of the model under study

35. Yi, Kim and Lin [2022] NLP & DL A comparative study comprising NLP derived disease labels and 
radiologist review of images

– –

36. Bressem et al. [2021] NLP & DL Approach presented enabled use of a BERT model pre-trained in the 
respective language to learn the domain-specific words

Memory limitation of the hardware accelerator used Future studies investigating an approach that allows for integration of texts

37. Zhang et al. [2023] ML Evaluation of consecutively enrolled individuals in the clinical practice 
setting

Data on ethnicity and patient demographic characteristics beyond age and sex not included, 
study limited to a country

Future work to study the generalizability of this system in different geographic 
settings

38. Siemens Healthineers [2023] Robotics Boosts the new true2scale body scan feature System particularly suited for orthopedic and trauma cases, lack of sound empirical evidence –

39. Ajani et al. [2023] Robotics & 
DL

Model successfully implemented on social robot as an assistive platform 
for radiologist, guaranteeing clinical usability

– –

Table 2 (continued)
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Table 2 (continued)

S/N Literature AI domain Strength(s) Limitation(s) Gap(s)

40. Chapman and Haug [1999] Expert 
system

Well demonstrated comparative study between computerized  
techniques and physicians

Challenges creating a gold standard in a field where language (e.g., opacities it describes) is 
vague, hazy, and ill-define

A test to determine if the uncorrected output of the parser combines with the 
expert system to provide an adequate assessment of support for pneumonia in 
CXR reports

41. Hassen et al. [2013] Fuzzy logic Combination of segmentation and recognition approaches, using spatial 
relations, database contains images from different institutions allowing 
for generalizability

Only PA images used –

42. Torres et al. [2014] Fuzzy logic Robust approach, using classical morphology operations to segment 
lungs thereby providing low computational complexity

– –

43. Suttitanawat et al. [2018] Fuzzy logic Experimental in design, novel algorithm capable of performing 
localization tasks

– –

44. Zhang et al. [2022] Fuzzy logic Adoption of a class compactness graph during manifold learning to 
address overfitting issues

Only Euclidean distance used during construction of the class compactness graph, lack of 
multi-center based external validation

–

45. Sahin, Akdogan and Aktan 
[2023]

Fuzzy logic Model comprised of three fuzzy units to further improve diagnosis – –

46. Ieracitano et al. [2022] Fuzzy logic 
& DL

Portable CXR utilized here allowed for the possibility of making 
recordings directly at home

Smal size of dataset Study validation using larger and linked datasets, integration of recent facemask 
detection method for COVID-19 prevention and control in public

47. Yadlapalli and Dokku [2023] Fuzzy logic 
& DL

Transfer learning approach very successful – –

S/N, serial number; AI, artificial intelligence; ML, machine learning; NLP, natural language processing; DICOM, digital information and communications in medicine; CNN, convolutional neural network; DL, deep learning; CXR, chest X-ray; COVID-19, coronavirus disease 2019; PA, posteroanterior; DLCR, 
deep learning-based assistive technology on chest radiograph interpretation; LSTM, long short-term memory; BERT, bidirectional encoder representations from transformers.
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achieved  the  h ighes t  COVID-19 detect ion 
performance accuracy of 96.24% for 4 classes- 
normal COVID-19, bacterial pneumonia and viral 
pneumonia.

	Deep and hybrid learning technique for tuberculosis 
detection in CXR (63): in the first approach, 
hybridizing two CNN models (ResNet-50 and 
GoogLeNet) with ML SVM classifier achieved 
superior results in detecting tuberculosis. In the 
second approach, application of artificial neural 
network (ANN) + ResNet-50 + Gray level co-
occurrence matrix (GLCM) + discrete wavelet 
transform (DWT) + local binary pattern algorithms 
(LBP) further improved performance (accuracy, 
sensitivity, specificity and AUC) of over 90% in both 
datasets under study.

	Established in a staged reading session (with and 
without AI) improved readers performance of CXR 
using AI (64); but the superior sensitivity of AI-
based application according to (65) seems to be 
accompanied with higher false-detection-rates, and 
this appears worrying. However, with these studies 
mostly retrospective, it is important to note that 
DL is still very much in the early stages, with many 
uses still theoretical in development or limited to a 
location or single institution (15). Further studies 
required to validate DL use in real-world setting for 
CXR interpretation before implementation in routine 
clinical practice.

Natural language processing (NLP)

NLP is concerned with ability of computers to understand 
texts and spoken words just as humans; combining 
computational linguistics, rule-based modeling of human 
language, ML and DL models, and working together 
to process human language in the form of text or voice  
data (66). Certain radiology reports contain imaging 
findings and diagnosis of radiologists in an unstructured 
natural text form (67), and this cannot be processed in 
CNN (where image classification relies on supervised 
training that is rooted on expert annotation), although other 
DL techniques can e.g., RNNs (68). NLP has the ability 
to recognize semantics (meaning) and context and generate 
medical reports. It can further assess spatial information in 
radiology reports, segmentation of report, detect actionable 
findings and produce image annotation (69-71).

In an earlier study (72), developed an NLP-based software 

package that supported extraction of semantic information 
from large data collections, and applied to CXR reports 
to automatically identify pneumonia among intensive 
care unit patients. A lexicon was formed to categorize 
pneumonia related terms and uncertainty profiles, assigning 
interpretations (positive or negative) according to each 
report’s query profile. This NLP algorithm demonstrated 
an impressive 92.7% sensitivity, 91.1% specificity, 93.3% 
positive predictive value and 90.3% negative predictive 
value.

Years later, Xue et al. presented a multimodal recurrent 
NLP model incorporating CNNs with long short-term 
memory (LSTM) and applied it to a CXR public data set to 
generate the imaging description parameters and impression 
sentences of CXR reports (73). It was found to produce 
high-level conclusive impressions as well as detailed 
descriptive findings to support the conclusion, maintaining 
coherency among generated sentences.

Towfighi et al. (74) developed an approach comprising 
of ML and NLP to identify presence of opacity, absence of 
opacity, follow-up report, and presence of endotracheal tube 
in CXR. The entire model was trained from 1,000 retrieved 
plain film CXR reports and classified according to the above 
mentioned 4 labels. An impressive accuracy, precision, 
recall and AUC of 0.84, 0.94, 0.81 and 0.86 respectively 
was observed in the model responsible for identifying cases 
without opacity. More results included a low precision 
value of 0.38 seen in the follow-up label model, an accurate 
classification of the endotracheal tube model recorded in 
the only case of intubation.

Olthof  e t  a l .  (75)  went on to introduce BERT 
(bidirectional encoder representations from transformers), 
a transformer-based language model built on learning 
the contextual relationships between words in text; this 
produced a superior performance [compared to other 
model architectures such as fully connected neural network 
(Dense), a LSTM recurrent neural network and a CNN] 
during a single-label classification task involving radiologist-
annotated chest radiographs dataset. In their more recent 
search in 2022, reiterated the promising role of transformer-
based language models in accurate text classification. In the 
findings of this retrospective study, demonstrated annotated 
datasets of radiology request and reports used to train, test 
and even compared five newly developed transformer-based 
NLP models (BERTje, RobBERT, BERT-multilingual, 
BERT-clinical and BERT-base) for multilabel classification 
in chest imaging. The RobBERT model performed best, 
producing AUC values ranging from 0.808 for chest 
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imaging request and 0.746 for report items, with an AUC 
value of 0.95 for classification of normal reports (76).

It is interesting to see a slight deviation in this 
comparative study assessing the level of agreement 
between NLP and radiologist-curated labels  for 
possible Tuberculosis detection on CXR, utilizing 2  
approaches (77):  NLP-derived disease labels  and 
radiologist-review of images. Findings revealed a poor 
level of agreement between NLP and radiologist-derived 
findings for possible cases of tuberculosis on CXR, with a 
kappa coefficient of 0.34.

A DL natural language BERT model pre-trained on 3.8 
million text reports yielded highly accurate classification 
of CXR, AUC of 0.98, 0.97, 0.97 and 0.99 for congestion, 
effusion, consolidation and pneumothorax respectively (78). 
This result surpassed the accuracy of previous approaches, 
with comparatively little annotation effort.

Zhang et al. (67) recently generated a BERT model 
similar to that of (75,76), built on a transformer mechanism 
that learns the contextual relationships between words in 
text, and is able to identify language entities and span, as 
well as semantic type of entities and semantic relationships 
between language entities. In an independent prospective 
test, this model produced significantly shorter reporting 
time (283 seconds) and highest similarity to final reports 
from radiologist [0.69 (0.24) mean/standard deviation 
(SD) bilingual evaluation score] in comparison with 
normal template [387 seconds; 0.37 (0.09)] and rule-based 
model [296 seconds; 0.37 (0.09)]; maintaining high level 
consistency with radiologist reports on a 23-label system 
of abnormalities (in the lungs, mediastinum, pleura and 
thorax). In spite of these, variation in radiology reports and 
the highly challenging task of creating labels for each image 
seems to limit its routine use in clinical practice. Recent 
research advances propose NLP use in conjunction with 
DL, yet scarcity of studies exist.

Robotics

refers to a system where robots are built and programmed 
to perform specific duties without further human 
intervention (79). Robotics has grown in heaps and bounds 
improving healthcare services, robotic-assisted radiography 
involving the use of robots to aid image acquisition process; 
this includes X-ray imaging where positioning the source 
and detector is done by robots, ultrasound imaging where 
the probe is held by a robot, endoscopy where robots 
enable the controlled trajectory of the imaging system for 

increased aperture and volumetric/tomographic imaging as 
well as track medical instrumentation, etc. (80,81).

Multitom Rax, an innovation from Siemens represents a 
significant improvement beyond traditional X-ray (82). This 
robotic X-ray system, utilizing AI allows for an unparalleled 
positioning flexibility and unique automated workflows 
around the patient thereby guarantying expansion in 
precision and patient experience. AI features “true2scale 
body scan” and “Real 3D” enable full-body images obtained 
[standing, sitting or supine at ALARA (as low as reasonably 
achievable) dose] and offer more insights in improving 
diagnostic confidence respectively.

One of the earliest applications of robotics in CXR was 
during the COVID-19 pandemic, a robotic framework 
proposed and given the task of classifying positive and 
negative COVID-19 patients based on CXR (83). This 
work consisted of two key parts: Transfer learning, utilizing 
learning models (GoogleNet and SqueezeNet) to screen 
positive and negative cases in CXR and CT images; and 
most importantly explainability of the model’s decision, 
demonstrated using Class Activation Mapping (CAM) 
and Gradient-weighted Class Activation Mapping (Grad-
CAM). A test accuracy, sensitivity and specificity of 90.90%, 
94.70% and 87.20% were obtained for SqueezeNet whereas 
96.40%, 95.50% and 97.40% for GoogleNet respectively. 
Transfer learning according to Reedy (84) refers to a 
research problem in ML where knowledge obtained while 
solving a problem is stored and used to solve another related 
problem. This “decision making” process represents a vital 
aspect and is of clinical relevance as previously reviewed 
DL contributions to robotics setup unable to provide this. 
A major reason for such is likely the high computational 
demands of these models compared to low computational 
capabilities of clinical devices, and this is yet to be 
addressed. Extensive creative research by way of creating 
models, testing and analysis of numerical data is expected in 
this regard.

Expert system (ES)

ES is a computer program that learns and attempts to 
reciprocate judgment and decision-making ability of 
humans using AI technologies, with the intention to 
offer suggestions and complement rather than replace 
human experts (85). The main components of an ES are 
knowledge base, inference engine, user interface. ES works 
by accumulating experience and facts on a knowledge 
base, integrate them with an inference or rules engine and 
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provides an answer to the problem; it relies solely on having 
a good knowledge base (86).

ES application in CXR was originally reported in a 
comparative study identifying CXR reports that supports 
acute bacterial pneumonia (87), the performance of 
two computerized techniques constructed from expert 
knowledge (ES) matched to two computerized techniques 
that learn rules and structure from data (ML). It was 
discovered that ML performed in same capacity as ES and 
physician, all three techniques performing better than a 
baseline keyword search.

However, as knowledge base increased following 
increasing data, resulted in a proportionate increase in the 
processing complexity of ES, subjecting these systems to 
many computational problems. The expectation of the 
inference engine to process huge number of rules to reach 
a decision thrown into serious jeopardy given the challenge 
in verifying that decision rules are consistent with each 
other amidst many rules (88,89). Furthermore, overfitting 
and overgeneralization effects when using known facts to 
generalize other cases not well described in the knowledge 
base (90), as well as lack of a quick and efficient update of 
the knowledge base continue to persist (91,92). Hence it 
has become clear that new approaches to AI are lacking; 
and this is required as oppose rule-based technologies to 
improve health outcomes.

Fuzzy logic (FL)

FL is defined as generalization of classical logic; offering 
mechanism of approximation (approximate reasoning based 
on abundance of data) and inference (decision making) in 
situations of partial truth, i.e., times where decision as to 
whether true or false cannot be made (93). FL algorithms 
work on the principle of solving a problem after considering 
all available data. 

In a paper presented by Hassen et al. (94), proposed 
spatial relation integration (represented by fuzzy subsets of 
the image space) in the process of segmentation of CXR; 
spatial relations of great help when finding contours of 
poorly contrasted objects or ill-defined boundaries. This 
automatic approach significantly performed with high 
accuracy for all lung structures, a strong level of agreement 
between automatic and manual chest radiography 
segmentations noted; although the recognition rate for left 
pericardiac was low compared with other structures.

In the research conducted by Torres et al. (95), produced 
a robust fuzzy classifier to detect cardiomegaly in chest 

radiographs. This method uses classical morphology 
operations to segment the lungs and provides a fast 
computation of the CTR; a 93.85% and 100% value 
for sensitivity and specificity respectively recorded for 
cardiomegaly.

In detecting one of the deadly cancers (lung nodules) in 
CXR images, an interval type-2 FL system was proposed 
by Suttitanawat et al. (96) based on a novel lung nodule 
detection algorithm. This system impressively detected per 
image probable locations of lung nodules, with a 0.82 true 
positive and 13.11 false positive rate, utilizing 4 features: 
D-descriptors, mean intensity of inside boundary, circularity 
ratio and HH (high frequency) diagonal component from 
wavelet transform.

It is surprising to see in the studies of Zhang et al. (97), 
an established interpretable TSK (Takagi-Sugeno-Kang) 
fuzzy system for COVID-19 detection using radiomics 
features extracted from CXR images. This technique, 
involving binary label matrix of training samples (with the 
assumption that the samples are in same class and kept 
in close proximity) and an after what transformation into 
the label space achieved a classification accuracy of over 
83%, better than modern models and maintaining high 
interpretability.

Similar experience in COVID-19 detection was 
witnessed in the research conducted by Şahin et al. (98), 
a type-2 FL-based model comprising of three fuzzy units 
developed to aid diagnosis. The first fuzzy unit produced 
COVID-19 positivity as a percentage of respiratory rate, 
loss of smell and body temperature values; the second 
according to C-reactive protein, lymphocyte and D-dimer 
values; the third according to clinical examination and blood 
analysis (Third fuzzy unit simply represents outputs of the 
first and second fuzzy units). Under extensive evaluation, 
this system detected COVID-19 with 86.6% accuracy.

In a bid to address the challenges in the research of 
Hassen et al. (94), Ieracitano et al. (99) employed a hybrid 
approach, developing a FL-based DL model known as 
CovNNet (a neural network) to characterize COVID-19 
related pneumonia and no COVID-19 pneumonia, based 
on extracting relevant features from portable CXR images 
combined and fuzzy images generated by fuzzy edge 
detection algorithm. The reason for the introduction 
of the fuzzy edge detection procedure (alongside DL, a 
hybrid approach) was to tackle issues such as vagueness, 
ambiguities and uncertainties in lung edges usually present 
in portable CXR images. Results showed that a combination 
of CXR and fuzzy features embedded within a DL approach 
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produced a higher classification performance (81% 
accuracy) compared to conventional DL approaches.

An even more successful approach to classifying COVID, 
viral and bacterial pneumonia in CXR utilizing FL and DL 
was seen in the recent studies of Yadlapalli et al. (100). Here, 
ResNet 18 model attained a 97% classification accuracy, 
96% precision, and 98% recall (in the case of COVID-19 
detection using CXRs images). Another significant finding 
is the maximum sensitivity ratio of 97.1% and a 97.47% F1-
score rate, the highest compared to previous techniques. 
However, it can be deduced that the accuracy of FL systems 
is usually compromised as the system works mostly on 
inaccurate inputs/imprecise data; thus, results are not 
always widely accepted. Also is the fact that there is no 
single systematic approach to solving problems, making it 
confusing as there are many solutions arising for a particular 
problem. A hybrid approach that involves a combination 
of FL systems and artificial neural networks enhances 
efficiency and tremendously improves overall performance 
(93,101).

Conclusions

A chronological narrative of AI, its domains, and 
applications to CXR have been well demonstrated by way 
of comprehensive assessment of key findings in a range of 
studies. Synthesis of evidence was done, highlighting the 
strengths, limitations, and gaps in knowledge. In a nutshell, 
results suggest that ML can be very useful in certain 
administrative tasks in CXRs such as exam scheduling and 
worklist management, as well as the image acquisition 
process. DL showed very promising signs as regards image 
interpretation, although a hybrid approach may offer 
more insight. It is highly recommended that more in-
depth research be conducted to address limitations, justify 
implementation, and tackle policy issues.
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